Important Dates

Submission Deadline

July 26, 2021


Registration Deadline

July 28, 2021


Conference Dates

August 6-8, 2021


Download

Paper Template (Download)

Organized by

Supported by

Keynote Speakers



Prof. Yaoliang Song, Nanjing University of Science and Technology, China

Title: Ultra-Wideband Multi-Beam Forming of The Synthesized RF System Based on True-Time-Delay Technique
Abstract: Synthesized RF system is the development direction of complex electronic system platform in the future, and the implementation of synthesized RF system is the key technology. This paper focuses on the multi beam forming technology of UWB synthesized RF system. The cost of hardware implementation based on the traditional TTD (true-time-delayer) beam-forming technology is high and the scanning range is limited. In this paper, we firstly address a multi beam-forming approach based on true time delayers (TTD). Then we build a lens-based array system which can form high gain beams with a small number of antenna elements and also establish the mathematical model of the lens. Lastly, we proposed a radiation pattern synthesis method to scan continuously and radiate multi-beams of different function signals simultaneously. Simulation results verify the effectiveness of the proposed implementation and scanning method.




Prof. Yu Duan, Changchun University of Science and Technology, China

Title: The Application of Atomic Layer Deposition for Organic Electronics
Abstract: In 2019, the report transparent display technology and market forecast released by display research predicts that the market scale of transparent display will reach US $259.1 billion by 2023, showing huge market demand. Therefore, countries all over the world define the next generation display as transparent and flexible, that is, transparent flexible organic light emitting device (TFOLED). However, in order to truly realize TFOLED the lack of flexible transparent conductive film and encapsulation technology is the core problem that can not be avoided. The preparation scheme of remote plasma atomic layer deposition (ALD) proposed by us is expected to make a breakthrough in the bottleneck problems such as improving film conductivity, improving energy level matching, increasing water vapor barrier and reducing preparation process damage. Exploring the application of ALD technology in transparent flexible organic electroluminescent devices can not only solve the bottleneck problem of TFOLED practicability, It can also play an important role in other fields of organic electronic devices, such as organic photovoltaic device organic thin film transistors, open up the high-quality film preparation process "friendly" to organic materials, and provide a new idea for the research of more transparent and flexible electronic devices.